Beyond SYMPLICITY HTN 3: What's Next

David E. Kandzari, MD, FACC, FSCAI

Chief Scientific Officer
Director, Interventional Cardiology

Piedmont Heart Institute Atlanta, Georgia david.kandzari@piedmont.org

Disclosure

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below

Affiliation/Financial Relationship Company

Grant/Research Support Abbott Vascular, Boston Scientific Corporation,

Medtronic CardioVascular

Consulting Fees/Honoraria Abbott Vascular, Boston Scientific Corporation,

Medtronic CardioVascular, Micell Technologies, Terumo Medical

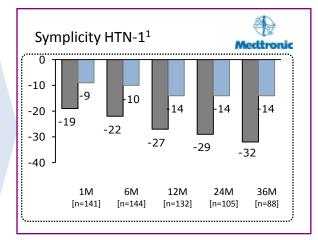
Major Stock Shareholder/Equity None

Royalty Income None

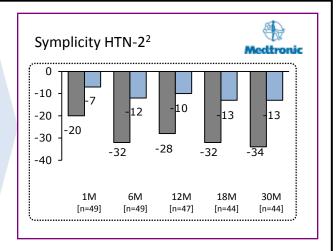
Ownership/Founder None

Intellectual Property Rights None

Other Financial Benefit None


Consistent and Significant Reductions in Blood Pressure Among Early Phase RDN Trials for Refractory Stage II HTN

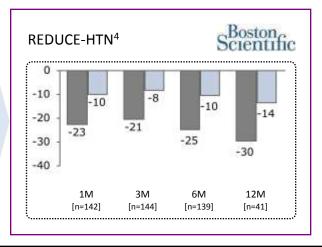
Blood pressure (BP) reduction in mmHg


Study details

- Start: 04/2008
- Patient group:
 Refractory stage II
 hypertension
- # of pts (target enrollment): 45 [expanded: 153]
- Main endpoint: Safety of RSD treatment
- MAE: None¹

Study details

- Start: 06/2009
- Patient group:
 Refractory stage II
 hypertension
- # of pts (target enrollment): 106 [randomized 1:1]
- Main endpoint:
 Blood pressure
 reduction
- MAE: 2⁵


Study details

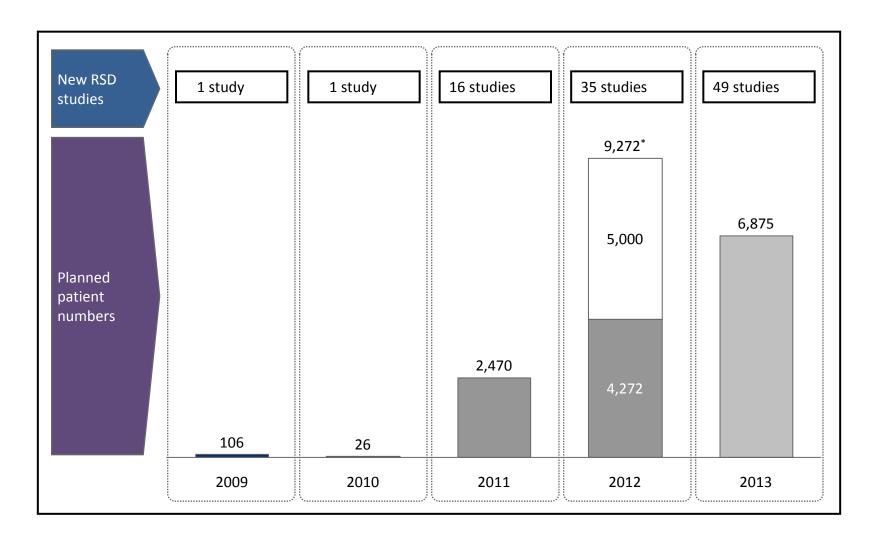
- Start: 10/2011
- Patient group:
 Refractory stage II
 hypertension
- # of pts (target enrollment): 47
- Main endpoint:
 Office blood pressure
- MAE: [0/4]⁶

Study details

- Start: 02/2012
- Patient group:
 Refractory stage II
 hypertension
- # of pts (target enrollment): 18 [expanded: 146]
- Main endpoint:
 Change in SBP and
 DBP
- MAE: 8⁷

2 As per 05/23/2013 3 As per 10/31/2013

4 As per 10/31/2013


MAE's: a) One renal artery dissection from injection of contrast into renal artery wall during dye angiography. Lesion was stented without further consequence. b) One hospitalization prolonged in a crossover patient due to hypotension following RDN. IV fluids administered, anti-hypertensive medication decreased and patient discharged without further incident.

No serious peri-procedural events; 4 MAE's through 18M: a) Worsening of pre-existing proteinuria b) Symptomatic hypotension c) Worsening of pre-existing renal artery stenosis d) New stenotic lesion MAE: a) Bilateral flank pain: Extended hospital stay for observation, add. testing was negative b) Renal artery stenosis: Baseline stenosis was 17% based on core lab assessment of angiogram; stenosis

¹ As per 09/10/2013

Annualized Increase in Number and Size of RDN Clinical Trials

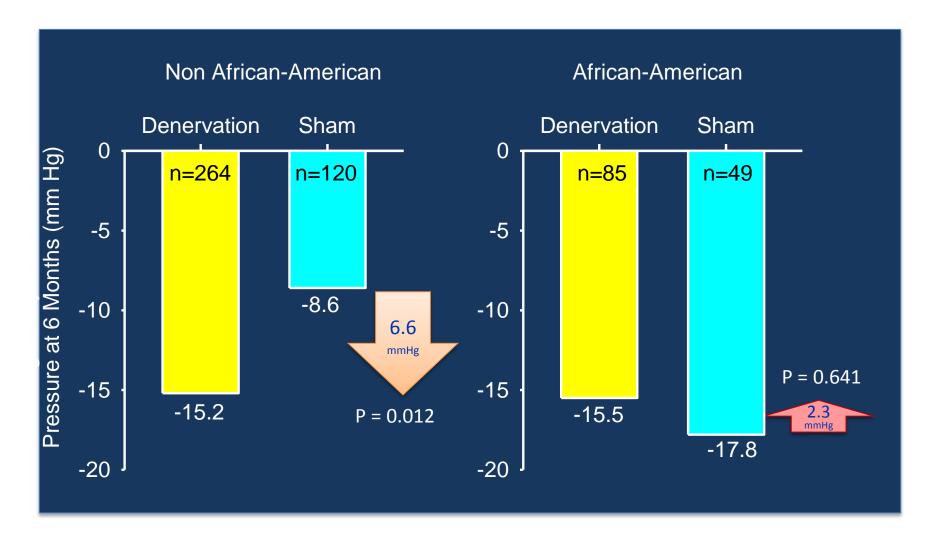
^{*} Includes MDT Global Symplicity RSD study with 5,000 planned patients Clinicaltrials.gov (search terms: "Renal denervation", "Renal sympathetic denervation", "RDN", "RSD")

(Not So Simple) SYMPLICITY HTN 3 Proposed Mechanisms of Failure to Meet Efficacy Endpoint

- Ineffective Procedure
- Patient Population
- Study Design
- Observer Bias and Regression to the Mean
- Patient Bias and Behavior

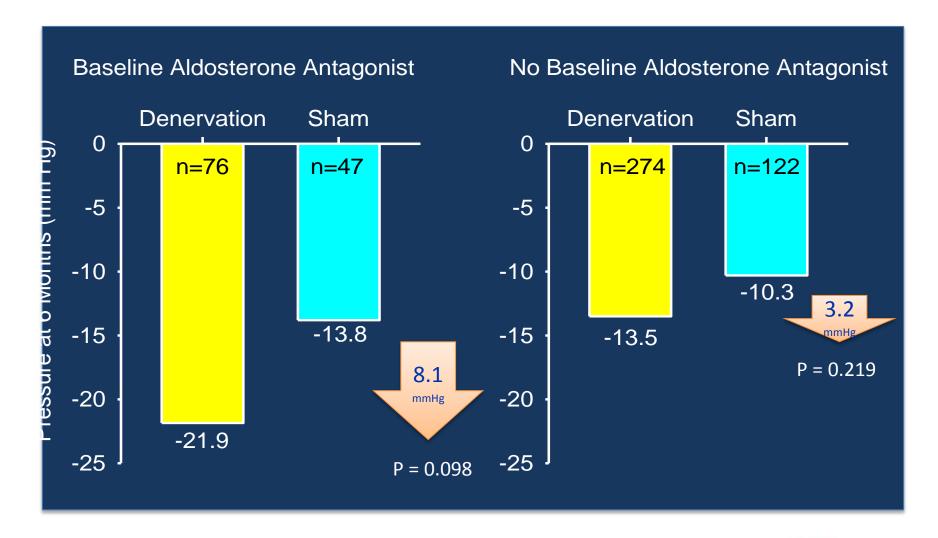
- Ineffective Procedure
 - Differing methods of RF delivery, differing energy modes
 - Limited predictability of treatment effect
 - Degree of HTN, number of treatments, unilateral vs bilateral
 - No biomarker/surrogate of procedural efficacy
 - What is an acceptable reduction in hypersympathetic activity?
 - Limited understanding of interaction between RDN and physiology

Is the Reduction in Afferent Activity Following RDN Sustained?

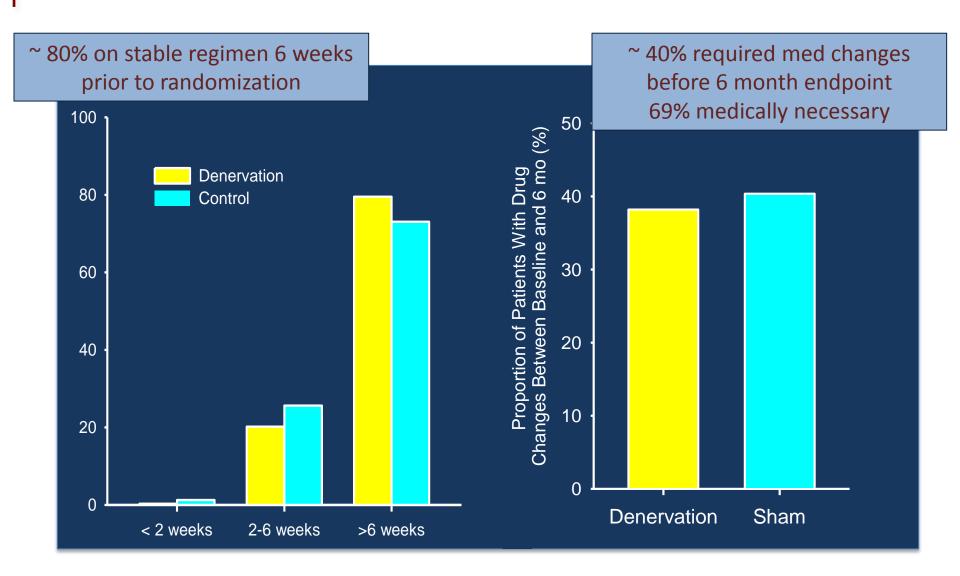

Parameter	Baseline	3 Months	6 Months	12 Months	P value
SBP, mm Hg	166 ± 22	154 ± 24	150 ± 27	144 ± 24	<0.001
DBP, mm HG	88 ± 19	82 ± 17	79 ± 16	77 ± 13	<0.001
HR, bpm	66 ± 14	66 ± 14	65 ± 14	67 ± 13	0.66
MSNA, bursts/min	51 ± 11	43 ± 14	45 ± 13	45 ± 15	0.001
MSNA, bursts/100 heartbeats	80 ± 16	69 ± 17	70 ± 16	69 ± 18	<0.001

- Ineffective Procedure
- Patient Population
 - Expansion to broader, less selected population suggests less robust but still meaningful treatment effect
 - No clear insights to subgroups of particular interest: diabetes, CKD, non-Caucasian

Blood Pressure Changes Among Pre-specified Subgroups in SYMPLICITY HTN 3



- Ineffective Procedure
- Patient Population
 - Expansion to broader, less selected population suggests less robust but still meaningful treatment effect
 - No clear insights to subgroups of particular interest: diabetes,
 CKD, non-Caucasian
 - Impact of medications, medication changes and compliance



Blood Pressure Changes Among Pre-specified Subgroups in SYMPLICITY HTN 3

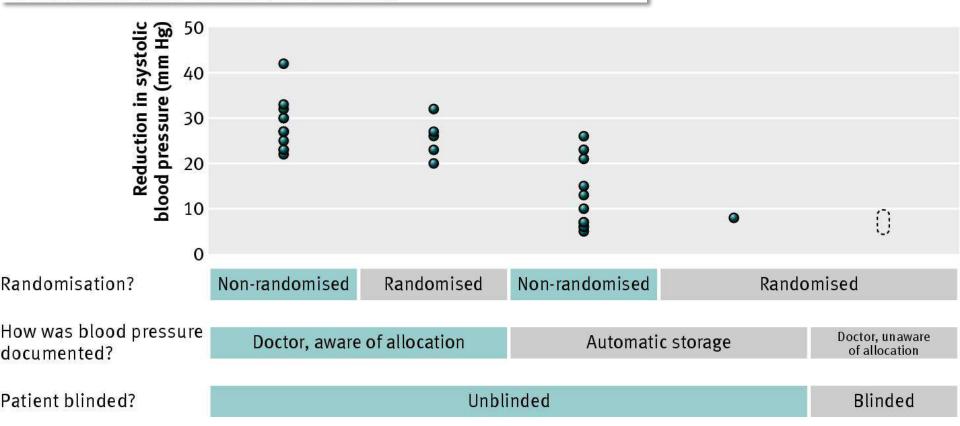
Medication Changes Pre- and Post Randomization in HTN 3

- Ineffective Procedure
- Patient Population
- Study Design

Comparison of HTN-2 and HTN-3 Trial Designs

	HTN 2 N=106	HTN 3 N=530
Randomized	✓	
Patient Blinded	X	✓
F/U Assessor Blinded	X	\checkmark
ABPM SBP > 135 mm Hg required?	X	\checkmark
Stable drug 3+ regimen with no changes >2 weeks prior to enrollment	√	√
Omron BP machine with printer	✓	\checkmark
Randomize after angiogram	✓	\checkmark
Escape medications	✓	\checkmark
2 office visits prior to randomization	✓	\checkmark
New investigators	√ / ×	\checkmark

- Ineffective Procedure
- Patient Population
- Study Design
- Observer Bias and Regression to the Mean

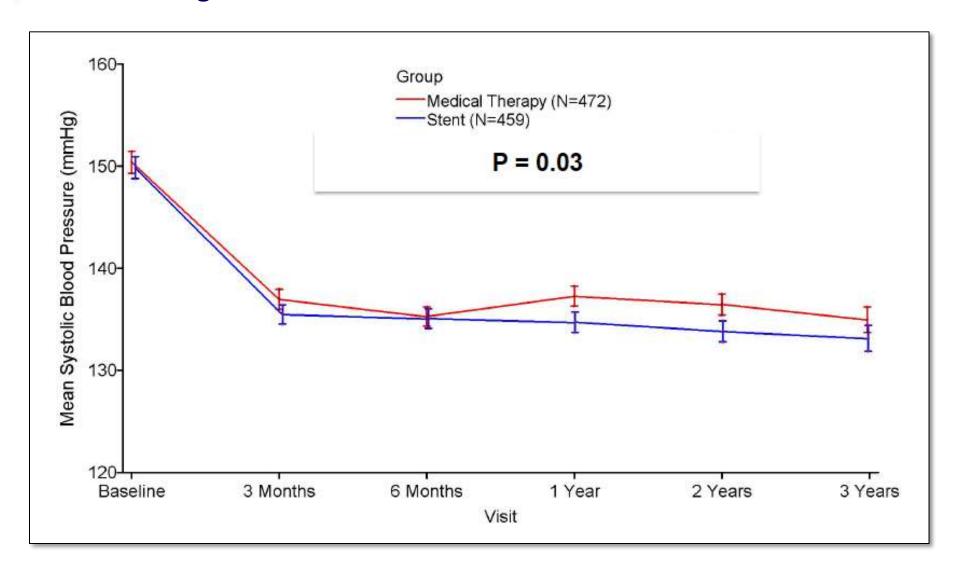


EDITORIALS

Removing the hype from hypertension

Symplicity HTN-3 illustrates the importance of randomisation and blinding for exciting new treatments

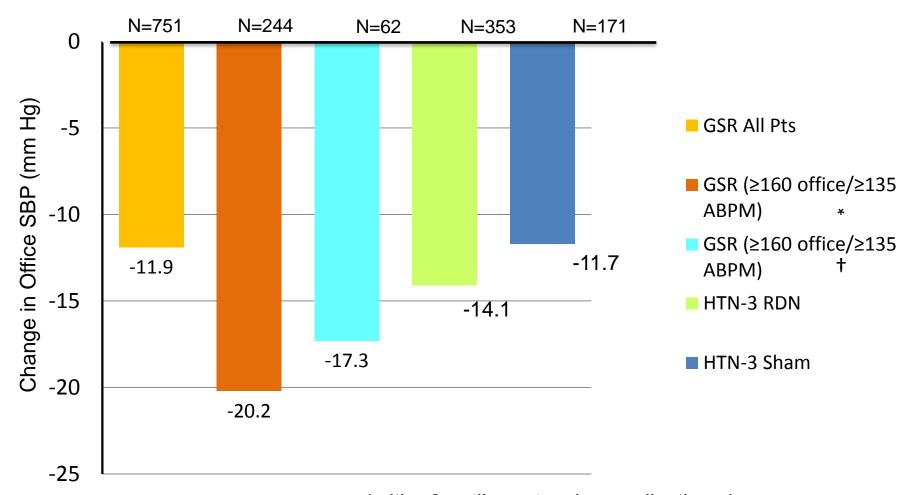
Matthew J Shun-Shin academic clinical fellow in cardiology, James P Howard academic clinical fellow in cardiology, Darrel P Francis professor of cardiology


- Office pressure drops may be artifactually larger than ambulatory drops in renal denervation trials because of either overestimation of baseline office pressures, or underestimation
 - Overestimate: patients are selected on the basis of exceeding a threshold on any marker that naturally fluctuates with time ('regression to the mean')
 - Underestimation of final office pressures may be explained by observer bias ('check once more')
 - Patient knowledge of treatment status may impact compliance

- Ineffective Procedure
- Patient Population
- Study Design
- Observer Bias and Regression to the Mean
- Patient Bias and Behavior



CORAL Trial Differentiating "Sham" vs "Placebo" Effect



Impact of Clinical Trial Participation on Patient Behavior and Outcomes Hawthorne Effect

Change in Office SBP at 6 Months in GSR and SYMPLICITY HTN 3

*with ≥3 antihypertensive medication classes † with ≥3 antihypertensive meds at maximum tolerated dose

Predictors of Blood Pressure Response in GSR and HTN 3 Trials

SYMPLICITY HTN-3 RDN Arm - Multivariate Predictors of Office SBP Change at 6-Months

318 Subjects Included in Analysis

Covariate	Estimate	Standard Error	P Value	
Baseline Office SBP at >= 180	-14.31089	2.51207	<0.0001	
Total Number of Attempts	-0.93574	0.45352	0.0399	
Aldosterone Antagonist	-9.77411	3.08819	0.0017	
Vasodilator	7.55107	2.6362	0.0045	

GSR Severe Resistant HTN Subset* - Multivariate Predictors of Office SBP Change at 6-Months

220 Subjects Included in Analysis

			1
Covariate	Estimate	Standard Error	P Value
Baseline OSBP ≥ 180	-17.17156	2.76427	<0.0001
Male gender	-5.15111	2.76947	0.0643
Age < 65	-5.89746	2.65917	0.0276
Total Number Attempts	-0.77441	0.32516	0.0181
Calcium Channel Blocker use	5.39727	3.19859	0.0930
Vasodilator use	7.11995	3.51914	0.0443

Catheter-Based Renal Denervation Future Perspectives

- Effectiveness of RDN cannot be measured by a singular trial and may not be extrapolated to other denervation methods
 - Oversimplification to assume a singular therapy to uniformly treat a heterogeneous disease condition
- Need to revisit physiology and identify practical measures of effective sympathetic interruption
- Forthcoming evaluation of RDN for treatment resistant HTN will require careful trial design that:
 - Demonstrates biologic efficacy, and
 - Differentiates potential confounders of observer and patient bias
 - Focus on less variable and more independent endpoints (eg, ABPM)
- RDN in clinical practice should be applied judiciously and in context of dedicated follow-up of outcomes
- Studies examining pleitropic effects of reducing sympathetic signature must and will be held to same standard and ideally be supported independent of BP lowering

